skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qian, Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 5G and future 6G networks deploy cells with diverse combinations of access technologies, architectures, and radio frequency bands/channels. Cellular operators also employ carrier aggregation for higher data access speeds. We investigate the fundamental question of how to intelligently and dynamically configure and reconfigure a user equipment's serving cells to deliver the best network performance. Through comprehensive measurements across 12 cities in 5 countries, we experimentally show the wide availability, heterogeneity, and untapped performance gains of today's cell deployments. We then present a principled, performance-driven connectivity management framework, dubbed OPCM. It is a centralized solution deployed at the base station, allowing it to coordinate multiple UEs, enforce operator policies, and facilitate user fairness. Extensive evaluations show that OPCM improves the application QoE by up to 65.2%. 
    more » « less
    Free, publicly-accessible full text available November 24, 2026
  2. In the era of 5G and beyond, dynamic Time Division Duplex (TDD) has become essential for supporting applications that demand high bandwidth and low latency. Emerging uplink-intensive use cases such as real-time video analytics, autonomous vehicles and augmented reality further complicate the balance between uplink and downlink resources. Despite their potential, TDD policies employed by current 5G networks remain underexplored. Our investigation reveals that existing TDD policies are static and predominantly downlink-focused, failing to adapt to fluctuating network demands. We introduce Wixor, a robust dynamic TDD policy adaptation system tailored for 5G and next-generation (xG) networks. It proactively adjusts the allocation of TDD resources between uplink and downlink, addressing various practical challenges. Prototyped on a programmable testbed, Wixor demonstrates substantial performance improvements across diverse applications, achieving up to 96.5% enhancement in Quality of Experience (QoE) compared to existing baselines. 
    more » « less